Experimental Measurement of the Level of Transmutation and Neutron Flux Density in Subcritical Nuclear Reactors ADS

> KUBIN Rostislav ^{a,e}, SOBALEU Mikita ^a, FILOVA Vendula ^b, RUTKOWSKA Katarzyna ^c, CHOJNACKI Mateusz ^c

> > Supervisor: Marcin Bielewicz d

^a Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering

Physical Engineering

^b Brno University of Technology, Faculty of Electrical Engineering and Communication

^c University of Warsaw, Faculty of Physics

- ^d Joint Institute for Nuclear Research
- e contact: kubinros@fjfi.cvut.cz

International Summer Practice, Stage 2, 07-27 July, 2019

Outline

- Study motivation. ADS systems
- «Quinta» experiment definition
- DEIMOS and efficiency calibration
- Determine parameter B and results from Yttrium
- Neutron flux calculation
- Steel results
- Conclusion

Evolution of Nuclear Power

International Summer Practice, Stage 2, 07-27 July, 2019

JOINT INSTITUTE FOR NUCLEAR RESEARCH

Generation IV

Accelerator-Driven System

Subcritical system

- $k_{ef} = \frac{number \ of \ neutrons \ in \ one \ generation}{number \ of \ neutrons \ in \ preceeding \ generation} < 1$

- Neutron source
 - Accelerator + spallation target
- Core can include
 - MA + LLFP
 - Weapons-grade plutonium
 - Thorium

Purpose of the experiment

The main goal of the experiment is to determine the density of fast neutron fluxes in **QUINTA** experiment using the level of transmutation in subcritical reactors, which can be determined by using **neutron activation method**.

International Summer Practice, Stage 2, 07-27 July, 2019

JOINT INSTITUTE FOR NUCLEAR RESEARCH

The experimental assembly - Quinta

- Consist of about 512 kg natural uranium
- Divided into 5 section
- Each section consist uranium cylindrical rods in the aluminium cover (1 51,2-5 61)
- Surrounded by lead bricks cover

Scheme of uranium core of the Quinta set. [1]

Scheme of Quinta assembly surrounded by the lead bunker. [1]

Experiment Quinta

View of experimental system along with the lead shield along the beam axis. [1]

Sample – Yttrium

- Natural yttrium with a purity of 99,99%
- Abudance of only one isotope Y-89
- Sufficient half-life to measure products of Y-89 (n,xn) reactions

Samples of Yttrium.

Sample – Stainless steel

• The most common and widely used stainless steel

Elements	AISI304 [%]	Maximum value [%]				
Carbon (C)	<0.08	0.2				
Chromiuim (Cr)	17.50-20.00	28.00				
Manganese (Mn)	<2.00	10.50				
Sillicon (Si)	<1.00	4.50				
Molybdenum (Mo)	-	8.00				
Copper (Cu)	-	3.50				
Nickel (Ni)	8.00-11.00	36.00				
Niobium (Nb)	-	1.00				
Tungsten (W)	-	2.5				
Iron (Fe)	Balance	Balance				
P, S, N, B, Ti, Ce	-	<0.8				

JOINT INSTITUTE FOR NUCLEAR RESEARCH

Compositon of stainless steel.

Experiment Quinta

The placement of the Y-89 and stainless steel on the aluminium plates.

JOINT INSTITUTE FOR NUCLEAR RESEARCH

Gamma Spectrometry System

- High Purity Germanium (HPGe) detector with liquid nitrogen cooling
- HPGe consists of
 - Ge crystal
 - Lead shielding
 - Dewar container
 - Electronics and PC

HPGe gamma spectormetry system.

Software DEIMOS and energy calibration

- Software for spectra analysis
- Developed in UJV Rez in the Czech Republic

Screens from DEIMOS

Energy calibration

International Summer Practice, Stage 2, 07-27 July, 2019

JOINT INSTITUTE FOR NUCLEAR RESEARCH

Difference between 2-point and multi-point calibration

Comparison of two ways of enegry calibration in DEIMOS.

FOR NUCLEAR RESEARCH

Detector efficiency

International Summer Practice, Stage 2, 07-27 July, 2019

JOINT INSTITUTE FOR NUCLEAR RESEARCI

Data analysis – Parameter B

$$B = N_i \frac{1}{m \cdot I} \cdot \frac{\Delta S(G) \cdot \Delta D(E)}{\frac{N_{abs}}{100} \cdot \varepsilon_p(E) \cdot COI(E,G)} \cdot \frac{\lambda \cdot t_{ira}}{1 - exp(-\lambda \cdot t_{ira})} \cdot exp(\lambda \cdot t_+) \cdot \frac{\frac{t_{real}}{t_{live}}}{1 - exp(-\lambda \cdot t_{real})}$$

- B numer of nuclei per 1 g of sample and per 1 nucleus from the accelaerator
- N₁ area of the peak (number of counts)
- N_{abs} absolute intensity of the line in percentage
- $E_p(E)$ detector effciency in the energy function
- COI(E,G) cascade effects in the energy and geometry function
- I absolute numer of nuclei in the beam from the accelerator
- m mass of the sample

Data analysis – Parameter B

$$B = N_i \frac{1}{m \cdot I} \cdot \frac{\Delta S(G) \cdot \Delta D(E)}{\frac{N_{abs}}{100} \cdot \varepsilon_p(E) \cdot COI(E,G)} \cdot \frac{\lambda \cdot t_{ira}}{1 - exp(-\lambda \cdot t_{ira})} \cdot exp(\lambda \cdot t_+) \cdot \frac{\frac{t_{real}}{t_{live}}}{1 - exp(-\lambda \cdot t_{real})}$$

- \triangle S(G) sample area correction in the geometry function
- $\triangle D(E)$ self-absorption correction in the energy function
- λ decay constant
- $t_{1/2}$ half time period
- t_{ira} irradiation time
- $t_{\scriptscriptstyle +}$ time between the end of the experiment and the start of the measurement

Production of Y-88

Y-88 spatial distribution based on lines 898.042 and 1836.063 keV

Axial position [plane number]

FOR NUCLEAR RESEARCH

Production of Y-88 in R=4 cm axial distribution

Plane number and lenght in [cm]

FOR NUCLEAR RESEARCH

Production of Y-88 plane 2 radial distribution

International Summer Practice, Stage 2, 07-27 July, 2019

JOINT INSTITUTE FOR NUCLEAR RESEARCH

Neutron flux calculation

 To evaluate the high energy neutron field we need to know the microscopic cross section for the (n,xn) reaction of 89Y. The available experimental data of microscopic cross section for the reaction 89Y(n, 2n)88Y and the small part for reaction 89Y(n, 3n)87Y are going from EXFOR data base. Since the nuclear data libraries are poor TALYS code was used for calculation of (n,xn) reactions cross sections.

Neutron flux calculation

- Reaction Y-89 (n,xn):
- Y-89 (n,2n) Y-88 E_{th}=11,5 MeV
- Y-89 (n,3n) Y-87 E_{th}=20,8 MeV
- Y-89 (n,4n) Y-86 E_{th}=32,7 MeV
- Interval for neutron flux was divided into 3 groups according to the threshold energy
- 11.5 20.8 MeV
- 20.8 32.7 MeV
- 32.7 100 MeV

Neutron flux calculation

- B parameter B for the isotope
- S total number of protons from accelerator, which interact with the detector during the experiment
- A Avogadro constans
- t time of irradiation [s]
- σ average cross-section for reaction (n,xn) in particular energy range [barn]
- G atomic mass of the isotope

Neutron flux density for the energy range per primary particle - results

Distance from the front of the Quinta target [cm]

Isotopes found in steel samples

z	86Tc	87Tc	88Tc	89Tc	90Tc	91Tc	92Tc	93Tc	94Tc	95Tc	96Tc	97Tc	98Tc	99Tc	100Tc	101Tc	102Tc			
	85Mo	86Mo	87Mo	88Mo	89Mo	90Mo	91Mo	92Mo	93Mo	94Mo	95Mo	96Mo	97Mo	98Mo	99Mo	100Mo	101Mo	Seco	nds	
41	84Nb	85Nb	86Nb	87Nb	88Nb	89Nb	90Nb	91Nb	92Nb	93Nb	94Nb	95Nb	96Nb	97Nb	98Nb	99Nb	100Nb	> 10+15	10-01	
	83Zr	84Zr	85Zr	86Zr	87Zr	88Zr	89Zr	90Zr	91Zr	92Zr	93Zr	94Zr	95Zr	96Zr	97Zr	98Zr	99Zr	10+07	10-03	
39	82Y	83Y	84Y	85Y	86Y	87Y	88Y	89Y	90Y	91Y	92Y	93Y	94Y	95Y	96Y	97Y	98Y	10+04	10-05	
	81Sr	82Sr	83Sr	84Sr	85Sr	86Sr	87Sr	88Sr	89Sr	90Sr	91Sr	92Sr	93Sr	94Sr	95Sr	96Sr	97Sr	10+02	10-08	
37	80Rb	81Rb	82Rb	83Rb	84Rb	85Rb	86Rb	87Rb	88Rb	89Rb	90Rb	91Rb	92Rb	93Rb	94Rb	95Rb	96Rb	10+01 10+00	10-15 < 10-15	
	79Kr	80Kr	81 Kr	82Kr	83Kr	84Kr	85Kr	86Kr	87Kr	88Kr	89Kr	90Kr	91 Kr	92Kr	93Kr	94Kr	95Kr	unknown		
35	78Br	79Br	80Br	81Br	82Br	83Br	84Br	85Br	86Br	87Br	88Br	89Br	90Br	91Br	92Br	93Br	94Br			
	43		45		47		49		51		53		55		57		N			

Conclusion

- The purpose of the project was the research of neutron flux that was caused by high energy proton beam created by accelerator in the experimental assembly containing natural uranium (**Quinta** experiment)
- Fast neutron flux is used to plan further ADS subcritical experiments and future nuclear power plants especially their fuel cycle
- DEIMOS: **two point** energy calibration is enough
- Detector efficiency was successfully fitted by known standards
- Production of Yttrium isotopes decreases with increasing distance from the source of primary neutrons
- Neutron flux **peak** is for the second plane for closest position to the target because of construction of assembly
- Data of activation of steel samples will be analyzed **later** that will mainly improve knowledge about construction materials for fast reactors

Thank you for attention!

Questions?

References

- 1. M. Bielewicz, T. Hanusek, A. Jaskulak, M.Peryt, S.Tiutiunnikov, Determining the fast neutron flux density and transmutation level measurements in ADS bythe use of a threshold nuclear reaction, September 2018.
- 2. Source of image on slide 3: <u>https://www.researchgate.net/figure/The-evolution-of-</u> <u>nuclear-power_fig9_325855950</u>
- 3. Source of image on slide 4: <u>https://nsec.jaea.go.jp/ndre/ndre3/trans/objective-</u> <u>e.html</u>

